Toán 9

Chương trình Toán lớp 9 gồm lý thuyết và bài tập Toán 9 từ dễ, cơ bản tới nâng cao. Hướng dẫn cách giải các bài tập toán Đại số 9 và hình học 9.

Công thức tính diện tích hình tròn, hình quạt tròn

1. Công thức tính diện tích hình tròn Diện tích S của một hình tròn bán kính R được tính theo công thức: $ \displaystyle S=\pi .R_{{}}^{2}$ 2. Cách tính diện tích hình quạt tròn Trong hình tròn bán kính R diện tích hình quạt n° được tính theo công thức: $ \displaystyle S=\frac{\pi R_{{}}^{2}n{}^\circ […]

Góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn

1. Góc có đỉnh ở bên trong đường tròn Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. $ \displaystyle \widehat{BEC}=\frac{1}{2}$(sđ $ \displaystyle \overset\frown{BC}$ + sđ $ \displaystyle \overset\frown{AD}$) 2. Góc có đỉnh ở bên ngoài đường tròn Số đo của góc có đỉnh […]

Phương trình quy về phương trình bậc hai

Có hai dạng phương trình có thể quy về phương trình bậc hai đó là: phương trình trùng phương, phương trình chứa ẩn ở mẫu thức. 1. Phương trình trùng phương – Phương trình trùng phương là phương trình có dạng: $ \displaystyle ax_{{}}^{4}+bx_{{}}^{2}+c=0$ (a ≠ 0) – Giải phương trình trùng phương $ \displaystyle ax_{{}}^{4}+bx_{{}}^{2}+c=0$ (a […]

Hệ thức Vi-ét và ứng dụng giải hệ phương trình bậc hai

1. Hệ thức Vi-ét Nếu $ \displaystyle {{x}_{1}},{{x}_{2}}$ là hai nghiệm của phương trình $ \displaystyle ax_{{}}^{2}+bx+c=0$, a ≠ 0 thì: $ \displaystyle \left\{ \begin{array}{l}{{x}_{1}}+{{x}_{2}}=\frac{-b}{a}\\{{x}_{1}}{{x}_{2}}=\frac{c}{a}\end{array} \right.$ 2. Ứng dụng của định lý Vi-ét a. Tính nhẩm nghiệm – Nếu phương trình ax2 + bx + c = 0$ \displaystyle ax_{{}}^{2}+bx+c=0$ có a + b + c = […]

Công thức nghiệm của phương trình bậc hai ax^2+bx+c=0 (a ≠ 0)

Công thức nghiệm của phương trình bậc hai $ \displaystyle ax_{{}}^{2}+bx+c=0$ (a ≠ 0) Đối với phương trình $ \displaystyle ax_{{}}^{2}+bx+c=0$ (a ≠ 0) và biểu thức $ \displaystyle \Delta =b_{{}}^{2}-4ac$: – Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt: $ \displaystyle {{x}_{1}}=\frac{-b+\sqrt{\Delta }}{2a}$ và $ \displaystyle {{x}_{2}}=\frac{-b-\sqrt{\Delta }}{2a}$ – Nếu ∆ = […]

Giải hệ phương trình bằng phương pháp cộng đại số

Quy tắc cộng đại số dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. 1. Quy tắc cộng đại số Gồm hai bước: Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được một phương trình mới. Bước 2: Dùng phương trình […]

Vị trí tương đối của đường thẳng và đường tròn

Có ba vị trí tương đối của đường thẳng với đường tròn: 1. Đường thẳng và đường tròn cắt nhau Có hai giao điểm, đường thẳng được gọi là cát tuyến, khoảng cách từ tâm tới đường thẳng nhỏ hơn bán kính. 2. Đường thẳng và đường tròn tiếp xúc nhau Có một giao điểm, đường thẳng […]

Biến đổi đơn giản biểu thức chứa căn thức bậc hai

1. Đưa thừa số ra ngoài dấu căn Với hai biểu thức A, B mà B ≥ 0, ta có $ \displaystyle \sqrt{A_{{}}^{2}B}=\left| A \right|\sqrt{B}$; tức là: Nếu A ≥ 0 và  B ≥ 0 thì $ \displaystyle \sqrt{A_{{}}^{2}B}=A\sqrt{B}$ Nếu A < 0 và  B ≥ 0 thì $ \displaystyle \sqrt{A_{{}}^{2}B}=-A\sqrt{B}$ 2. Đưa thừa số vào trong dấu căn Với A ≥ 0 và  B ≥ 0 […]