Toán cấp 2

Kiến thức Toán lớp 6, Toán lớp 7, Toán lớp 8, Toán lớp 9

căn thức

Rút gọn biểu thức có chứa căn thức bậc hai – Bồi dưỡng Đại số 9

Rút gọn biểu thức có chứa căn thức bậc hai Kiến thức cần nhớ: Để rút gọn biểu thức có chứa các căn thức bậc hai, trước hết ta thường thực hiện các phép biến đổi đơn giản (đưa thừa số ra ngoài dấu căn, khử mẫu của biểu thức lấy căn, trục căn thức […]

Căn thức bậc hai và hằng đẳng thức căn A mũ hai bằng giá trị tuyệt đối của A – Bồi dưỡng Đại số 9

 Căn thức bậc hai Kiến thức cần nhớ: Ví dụ 3. Tìm các giá trị của x để các biểu thức sau có nghĩa: Giải     Chú ý: Muốn tìm các giá trị của x để biểu thức có nghĩa, ta phải giải bất phương trình A ≥ 0. Nếu A là nhị thức […]

Đại số 9 – Chuyên đề 3 – Biến đổi & rút gọn căn thức bậc hai

Đây là bài thứ 5 of 6 trong series Chuyên đề Toán 9

A – LÝ THUYẾT I . Biến đổi đơn giản biểu thức chứa căn thức bậc hai: ·         Đưa thừa số ra ngoài dấu căn: $ \displaystyle \sqrt{{{{A}^{2}}B}}=\left| A \right|\sqrt{B}$ (B ≥ 0) ·         Đưa thừa số vào trong dấu căn: $ \displaystyle A\sqrt{B}=\sqrt{{{{A}^{2}}B}}$ (với A ≥ 0 và B ≥ 0)   $ \displaystyle […]

Đại số 9 – Chuyên đề 2 – Nhân, chia căn thức bậc hai (tiếp)

Đây là bài thứ 4 of 6 trong series Chuyên đề Toán 9

C – Hướng dẫn – trả lời – đáp số DẠNG 1: Thực hiện phép tính. Bài tập 1: Tính: a) A = $ \displaystyle \sqrt{{(3+\sqrt{{5+2\sqrt{3}}})(3-\sqrt{{5+2\sqrt{3}}})}}=\sqrt{{{{3}^{2}}-{{{(\sqrt{{5+2\sqrt{3}}})}}^{2}}}}$ = $ \displaystyle \sqrt{{9-5-2\sqrt{3}}}=\sqrt{{4-2\sqrt{3}}}=\sqrt{{{{{(\sqrt{3}-1)}}^{2}}}}=\sqrt{3}-1$. b) B = $ \displaystyle \sqrt{{4+\sqrt{4}.\sqrt{2}}}.\sqrt{{(2+\sqrt{{2+\sqrt{2}}})(2-\sqrt{{2+\sqrt{2}}})}}=\sqrt{{4+2\sqrt{2}}}.\sqrt{{{{2}^{2}}-{{{(\sqrt{{2+\sqrt{2}}})}}^{2}}}}$ = $ \displaystyle \sqrt{{2(2+\sqrt{2})}}.\sqrt{{2-\sqrt{2}}}=\sqrt{{2(2+\sqrt{2})(2-\sqrt{2})}}=\sqrt{{2.2}}=2$. Bài tập 2: Thực hiện phép tính: a) $ \displaystyle \sqrt{{36}}+3\sqrt{{9.5}}-4\sqrt{{{{9}^{2}}.5}}=6+9\sqrt{5}-36\sqrt{5}=6-27\sqrt{5}$; b) $ \displaystyle \sqrt{{36.7}}-\sqrt{{100.7}}+\sqrt{{144.7}}-\sqrt{{64.7}}=\sqrt{7}.(\sqrt{{36}}-\sqrt{{100}}+\sqrt{{144}}-\sqrt{{64}})$ […]

Đại số 9 – Chuyên đề 2 – Nhân, chia căn thức bậc hai

Đây là bài thứ 3 of 6 trong series Chuyên đề Toán 9

LÝ THUYẾT I . Liên hệ giữa phép nhân, phép chia với phép khai phương 1.       Với A ≥ 0, B ≥ 0 thì: Khai phương một tích $ \displaystyle \sqrt{{A.B}}=\sqrt{A}.\sqrt{B}$ Nhân các căn thức bậc hai 2.       Với A ≥ 0, B > 0 thì: Khai phương một thương $ \displaystyle \sqrt{{\frac{A}{B}}}=\frac{{\sqrt{A}}}{{\sqrt{B}}}$ Chia hai […]

Chuyên đề: Nhân chia căn thức bậc 2 – Toán lớp 9

Chuyên đề Nhân chia căn thức bậc hai với các dạng bài: Thực hiện phép tính, Rút gọn biểu thức, Giải phương trình, Tìm GTLN, GTNN của biểu thức, Chứng minh biểu thức. Bài viết nêu lại lý thuyết cần ghi nhớ và các dạng bài tập, phần cuối là hướng dẫn giải, đáp án. A – […]

Chuyên đề: Phương trình có chứa căn thức

A) PHƯƠNG TRÌNH CHỨA CĂN THỨC I) TÓM TẮT LÍ THUYẾT 1) Các dạng cơ bản $ \displaystyle \begin{array}{l}\bullet \,\sqrt{A}=\sqrt{B}\Leftrightarrow \left\{ \begin{array}{l}A\ge 0\,\,(hay\,\,B\ge 0)\\A=B\end{array} \right.\\\bullet \,\sqrt{A}=B\Leftrightarrow \left\{ \begin{array}{l}B\ge 0\\A={{B}^{2}}\end{array} \right.\\\bullet \,\sqrt[3]{A}=B\Leftrightarrow A={{B}^{3}}\end{array}$ 2) Các dạng khác – Đặt điều kiện cho $ \displaystyle \sqrt[2n]{A}$ là $ \displaystyle A\ge 0\,$, nâng cả hai vế lên lũy […]


Toán cấp 2 © 2026 Liên hệ
tài liệu đại học