Toán cấp 2

Kiến thức Toán lớp 6, Toán lớp 7, Toán lớp 8, Toán lớp 9

bậc hai

Phương trình quy về phương trình bậc hai – Bồi dưỡng Đại số 9

Phương trình quy về phương trình bậc hai Toán 9 Kiến thức cần nhớ: Nhiều phương trình có thể giải bằng cách quy về phương trình bậc hai như phương trình bậc cao hơn bậc hai, phương trình chứa ẩn ở mẫu thức, phương trình vô tỉ,… Phương pháp đưa về phương trình tích và […]

Phương trình quy về phương trình bậc hai

Có hai dạng phương trình có thể quy về phương trình bậc hai đó là: phương trình trùng phương, phương trình chứa ẩn ở mẫu thức. 1. Phương trình trùng phương – Phương trình trùng phương là phương trình có dạng: $ \displaystyle ax_{{}}^{4}+bx_{{}}^{2}+c=0$ (a ≠ 0) – Giải phương trình trùng phương $ \displaystyle ax_{{}}^{4}+bx_{{}}^{2}+c=0$ (a […]

Hệ thức Vi-ét và ứng dụng giải hệ phương trình bậc hai

1. Hệ thức Vi-ét Nếu $ \displaystyle {{x}_{1}},{{x}_{2}}$ là hai nghiệm của phương trình $ \displaystyle ax_{{}}^{2}+bx+c=0$, a ≠ 0 thì: $ \displaystyle \left\{ \begin{array}{l}{{x}_{1}}+{{x}_{2}}=\frac{-b}{a}\\{{x}_{1}}{{x}_{2}}=\frac{c}{a}\end{array} \right.$ 2. Ứng dụng của định lý Vi-ét a. Tính nhẩm nghiệm – Nếu phương trình ax2 + bx + c = 0$ \displaystyle ax_{{}}^{2}+bx+c=0$ có a + b + c = […]

Công thức nghiệm của phương trình bậc hai ax^2+bx+c=0 (a ≠ 0)

Công thức nghiệm của phương trình bậc hai $ \displaystyle ax_{{}}^{2}+bx+c=0$ (a ≠ 0) Đối với phương trình $ \displaystyle ax_{{}}^{2}+bx+c=0$ (a ≠ 0) và biểu thức $ \displaystyle \Delta =b_{{}}^{2}-4ac$: – Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt: $ \displaystyle {{x}_{1}}=\frac{-b+\sqrt{\Delta }}{2a}$ và $ \displaystyle {{x}_{2}}=\frac{-b-\sqrt{\Delta }}{2a}$ – Nếu ∆ = […]


Toán cấp 2 © 2026 Liên hệ
tài liệu đại học